3.6.81 \(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [581]

Optimal. Leaf size=119 \[ \frac {\sqrt {a} (2 B+C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a (2 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

(2*B+C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+a*(2*A-C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(
a+a*sec(d*x+c))^(1/2)+C*sin(d*x+c)*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {4173, 4100, 3886, 221} \begin {gather*} \frac {a (2 A-C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}+\frac {\sqrt {a} (2 B+C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(Sqrt[a]*(2*B + C)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*(2*A - C)*Sqrt[Sec[c + d*x
]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]) + (C*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4173

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(
(d*Csc[e + f*x])^n/(f*(m + n + 1))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^
n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b*B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A
, B, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx &=\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {\int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (2 A-C)+\frac {1}{2} a (2 B+C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{a}\\ &=\frac {a (2 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} (2 B+C) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a (2 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}-\frac {(2 B+C) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {a} (2 B+C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a (2 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.62, size = 94, normalized size = 0.79 \begin {gather*} \frac {\sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \left (\sqrt {2} (2 B+C) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 (2 A+C \sec (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[2]*(2*B + C)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]] + 2*(2*A + C
*Sec[c + d*x])*Sin[(c + d*x)/2]))/(2*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(342\) vs. \(2(105)=210\).
time = 0.24, size = 343, normalized size = 2.88

method result size
default \(-\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (2 B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+2 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+C \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (-1-\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+C \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+8 A \left (\cos ^{2}\left (d x +c \right )\right )-8 A \cos \left (d x +c \right )+4 C \cos \left (d x +c \right )-4 C \right ) \sqrt {\frac {1}{\cos \left (d x +c \right )}}}{4 d \sin \left (d x +c \right )}\) \(343\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(2*B*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c)
)*2^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*2^(1/2)*sin(d*x+c)*cos(d*x+c)+2*B*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/4*(-
2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*sin(d*x+c)*cos(d*x+c)+C*arctan(1/4*(-2/(1+c
os(d*x+c)))^(1/2)*(-1-cos(d*x+c)+sin(d*x+c))*2^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*2^(1/2)*sin(d*x+c)*cos(d*x+c)+
C*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)*si
n(d*x+c)*cos(d*x+c)+8*A*cos(d*x+c)^2-8*A*cos(d*x+c)+4*C*cos(d*x+c)-4*C)*(1/cos(d*x+c))^(1/2)/sin(d*x+c)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 923 vs. \(2 (105) = 210\).
time = 0.69, size = 923, normalized size = 7.76 \begin {gather*} \frac {8 \, \sqrt {2} A \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, B \sqrt {a} {\left (\log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right )\right )} - \frac {{\left (4 \, \sqrt {2} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) \sin \left (2 \, d x + 2 \, c\right ) - 4 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) \sin \left (2 \, d x + 2 \, c\right ) - {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2\right ) + {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2\right ) - {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2\right ) + {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 2\right ) - 4 \, {\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right ) + 4 \, {\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (d x + c\right ), \cos \left (d x + c\right )\right )\right )\right )} C \sqrt {a}}{\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*(8*sqrt(2)*A*sqrt(a)*sin(1/2*d*x + 1/2*c) + 2*B*sqrt(a)*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/
2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 +
 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
 + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*s
in(1/2*d*x + 1/2*c) + 2)) - (4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - 4*sqrt(
2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c),
 cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x
 + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*
arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*
arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*
x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2
 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) +
 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*co
s(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos
(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c
), cos(d*x + c))) + 2) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) +
 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*C*sqrt(a)/(cos(2*d*x + 2
*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1))/d

________________________________________________________________________________________

Fricas [A]
time = 3.90, size = 342, normalized size = 2.87 \begin {gather*} \left [\frac {{\left ({\left (2 \, B + C\right )} \cos \left (d x + c\right ) + 2 \, B + C\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (2 \, A \cos \left (d x + c\right ) + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {{\left ({\left (2 \, B + C\right )} \cos \left (d x + c\right ) + 2 \, B + C\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left (2 \, A \cos \left (d x + c\right ) + C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(((2*B + C)*cos(d*x + c) + 2*B + C)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^
2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(co
s(d*x + c)^3 + cos(d*x + c)^2)) + 4*(2*A*cos(d*x + c) + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c
)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d), 1/2*(((2*B + C)*cos(d*x + c) + 2*B + C)*sqrt(-a)*arctan(2*sqrt(-a)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) -
2*a)) + 2*(2*A*cos(d*x + c) + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*c
os(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sqrt(sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((a + a/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________